Skip to Content
Biotechnology and health

Stem-cell therapies that work: 10 Breakthrough Technologies 2025

After years of controversy, stem cells are on the cusp of cures for conditions like epilepsy and type 1 diabetes.

human organs attached to a molded plastic frame reminiscent of toy packaging
Selman Design

WHO

California Institute for Regenerative Medicine, Neurona Therapeutics, Vertex Pharmaceuticals

WHEN

5 years

A quarter-century ago, researchers isolated powerful stem cells from embryos created through in vitro fertilization. These cells, theoretically able to morph into any tissue in the human body, promised a medical revolution. Think: replacement parts for whatever ails you. 

But stem-cell science didn’t go smoothly. Not at first. Even though scientists soon learned to create these make-anything cells without embryos, coaxing them to become truly functional adult tissue proved harder than anyone guessed.

Now, though, stem cells are finally on the brink of delivering. Take the case of Justin Graves, a man with debilitating epilepsy who received a transplant of lab-made neurons, engineered to quell the electrical misfires in his brain that cause epileptic attacks.

Since the procedure, carried out in 2023 at the University of California, San Diego, Graves has reported having seizures about once a week, rather than once per day as he used to. “It’s just been an incredible, complete change,” he says. “I am pretty much a stem-cell evangelist now.”

The epilepsy trial, from a company called Neurona Therapeutics, is at an early stage—only 15 patients have been treated. But the preliminary results are remarkable.

Last June, a different stem-cell study delivered dramatic results. This time it was in type 1 diabetes, the autoimmune condition formerly called juvenile diabetes, in which a person’s body attacks the beta islet cells in the pancreas. Without working beta cells to control their blood sugar levels, people with type 1 diabetes rely on daily blood glucose monitoring and insulin injections or infusions to stay alive.

Explore the full 2025 list of 10 Breakthrough Technologies.

In this ongoing study, carried out by Vertex Pharmaceuticals in Boston, some patients who got transfusions of lab-made beta cells have been able to stop taking insulin. Instead, their new cells make it when it’s needed. 

No more seizures. No more insulin injections. Those are the words patients have always wanted to hear. And it means stem-cell researchers are close to achieving functional cures—when patients can get on with life because their bodies are able to self-regulate. 

Deep Dive

Biotechnology and health

OpenAI has created an AI model for longevity science

The company is making a foray into scientific discovery with an AI built to help manufacture stem cells.

Digital twins of human organs are here. They’re set to transform medical treatment.

The models can be used to plan surgeries and in the future could be used to help trial new drugs.

Mice with two dads have been created using CRISPR

It’s a new way to create “bi-paternal” mice that can survive to adulthood—but human applications are still a long way off.

What to expect from Neuralink in 2025

More volunteers will get Elon Musk’s brain implant, but don’t expect a product soon.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.