MIT Technology Review Subscribe

Vera C. Rubin Observatory: 10 Breakthrough Technologies 2025

The telescope’s massive digital camera was built to take a lot of photos of the sky, in quick succession, for a very long time.

WHO

US Department of Energy’s SLAC National Accelerator Laboratory, US National Science Foundation

WHEN

6 months

Advertisement

The next time you glance up at the night sky, consider: The particles inside everything you can see make up only about 5% of what’s out there in the universe. Dark energy and dark matter constitute the rest, astronomers believe—but what exactly is this mysterious stuff? 

This story is only available to subscribers.

Don’t settle for half the story.
Get paywall-free access to technology news for the here and now.

Subscribe now Already a subscriber? Sign in
You’ve read all your free stories.

MIT Technology Review provides an intelligent and independent filter for the flood of information about technology.

Subscribe now Already a subscriber? Sign in

A massive new telescope erected in Chile will explore this question and other cosmic unknowns. It’s named for Vera Rubin, an American astronomer who in the 1970s and 1980s observed stars moving faster than expected in the outer reaches of dozens of spiral galaxies. Her calculations made a strong case for the existence of dark matter—mass we can’t directly observe but that appears to shape everything from the paths of stars to the structure of the universe itself. 

Explore the full 2025 list of 10 Breakthrough Technologies.

Soon, her namesake observatory will carry on that work in much higher definition. The facility, run by the SLAC National Accelerator Laboratory and the US National Science Foundation, will house the largest digital camera ever made for astronomy. And its first mission will be to complete what’s called the Legacy Survey of Space and Time. Astronomers will focus its giant lens on the sky over the Southern Hemisphere and snap photo after photo, passing over the same patches of sky repeatedly for a decade. 

By the end of the survey, this 3.2-gigapixel camera will have catalogued 20 billion galaxies and collected up to 60 petabytes of data—roughly three times the amount currently stored by the US Library of Congress. Compiling all these images together, with help from specialized algorithms and a supercomputer, will give astronomers a time-lapse view of the sky. Seeing how so many galaxies are dispersed and shaped will enable them to study dark matter’s gravitational effect. They also plan to create the most detailed three-dimensional map of our Milky Way galaxy ever made. 

If all goes well, the telescope will snap its first science-quality images—a special moment known as first light—in mid-2025. The public could see the first photo released from Rubin soon after. 

This is your last free story.
Sign in Subscribe now

Your daily newsletter about what’s up in emerging technology from MIT Technology Review.

Please, enter a valid email.
Privacy Policy
Submitting...
There was an error submitting the request.
Thanks for signing up!

Our most popular stories

Advertisement